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The motion of a multi-component medium is considered as consisting of 

the mutuallY permeating motions of the components which make up the 

medfum. as was Proposed by Rakhmatulin [i 1. The motion of each com- 

ponent is analogous to motion in a porous medium. Along with the con- 

cept of the true density of the n’th component pn” we make use also 

of the concept of the peculiar density pn” = M,/W of the n’th component. 

Here Mn is the mass of the n’th component in a volume W of the medium. 

Consideration is limited to those media in which the pressure at 

each point can be taken as common to all the components. 

1. Relations at a strong discontinuity. &%ppose that a strong discon- 

tinuity surface is propagated in a space occupied by a mixture consisting 

of N components. let us consider an element 6' of the surface of discon- 

tinuity in a fixed rectangular system of coordinates, with the axis of y 

directed parallel to the normal to the element under consideration at a 

given instant of time t. Let us denote by ua, vn, wa the projections of 
the velocity V, of particles of the n'th component on the coordinate 

axes, and by D the velocity of translation of the element along the 

normal to the front. 

We shall denote the parameters of the medium in front of and behind 

the discontinuity surface by the subscripts + and - respectively. We shall 

specify an element of volume of the medium (D - v,)dSdt in front of the 

element a!3 of the discontinuity tiurface at time t. Then in the interval 

dt all the particles of the n'th component contained in the specified 

volume element at the time t will pass behind the discontinuity surface. 

We shall now specify an element of volume of the medium (D- u,)dSdt 

behind the element aS of the surface of discontinuity, containing the 

same particles of the n'th component. It is clear that the mass of the 

n'th component in both the specified volume elements is the same, although 

the masses of the remaining N- 1 components will, generally speaking, be 

Reprint Order No. PMM 22. 

268 



Propagation of discontinuities in a multi-component redium 269 

different. The law of conservation of mass of the n’th component at the 
strong discontinuity can be written in the form 

(D -vnt) pn+.= (D - rn-1 pn- (n::l,...,N) (1.1) 

where pnes pn_ are the peculiar densities of the n’th component before 
and behind the discontinuity surface. 

let us write down the equations for the conservation of dents along 
the coordinate axes for the specified mass of the n’th component. Bearing 
in mind that the force due to the pressure p on any element of area dS, 
when apportioned between the components of the mixture, amounts to a 

share of p(p,,/p,,*)ds for the n’th component, we obtain 

??I+ (D - %zJ2 + P.&a+ / pnp = Pn- P - L)a + P-P+ I Pn-” (1.2) 

$I+ (n - &I+) %I+ = Pn- (D - vrt-) an- 

Pn+ (D - %I+) %+ = Pn- (D - V*-) W,- 
(n=i,...,iv) 

‘Ihe forces of interaction of the n’th component with the remaining 
components do not appear in the equations so obtained, in so far as these 
forces are infinitely small. 

lhe system of equations (1.11, (1.2) will be supplemented by the rela- 
tions 

P- = yn (pn-“7 Pa7 POn') (n=i,...,N) (1.3) 

which we shall assume to be part of the data, snd by the relation 

arising from the fact that the ratio pn_/pn_* is the fraction of the 
volume of the medium occupied by the n’th component. 

It must be borne in mind that similar relations apply to the para- 
meters of the components in front of the discontinuity surface: 

$-+, h. 
P+ = [9n (Pn+“, PO9 POn') 

n-l b+ 

(1.5) 

The quantities po, pORo are certain initial values of the pressure and 
density and, in particular, may be taken as 

PO = P+, pan* = Pn+O 

Let us consider the possible types of discontinuity in the multi-com- 
ponent medium. In the case when there is no flow of the medium across the 
surface of discontinuity, we have 

Ga+ = u,_. = I3 (n=I,...,N) 

‘Ihen equation (1.1) and also the last two equations of the system (1.2) 
are satisfied by arbitrary values p,,+, 
first of the equations (1.2) gives 

p,_, u,,,, un_, w,,+, w”,, and the 
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P-?n-- I pee = P+Pn+ I Pn-tO (n=l,...,N) 

Adding these relations for all N components and using (1.4) and the 

first of equations (1.5), we obtain p_ = p+. Then it follows from the 

last relation that 

pn-/fL" = Pn+lPn+O (n = 1,. . , N) (1 .ti) 

If the projections of the velocities, tangent to the surface of dis- 

continuity, are the same on both sides of the discontinuity: uW = un_, 

w* = @Jn_ (n = 1, .**, N) and the true densities of all the N components 

or certain of them (N1) are different: p,,' f p,"fn = I, . . . . N1l, then 

by analogy with the case of a single-component medium the discontinuity 

can be called a contact discontinuity in the multi-component medium. In 

this case the peculiar densities of the respective components are also 

different and they satisfy the relations (1.61. 

If the values of at least one of the projections of the tangential 

velocities are not equal on the two sides of the discontinuity, then 

there is a tangential discontinuity in the multi-component medium. Then 

the densities may be either different or the same. 

The discontinuities so far considered are completely analogous with the 

corresponding discontinuities in a single-component medium. In contrast, 

however, to a single-component medium, a mixture can permit the propaga- 

tion of discontinuities which, being tangential (Gith regard to certain 

components), are nevertheless at the same time shock waves. In fact, 

suppose that there is no flow of certain components (.N,) across the dis- 

continuity surface; then vnt = v,_ = Dh = 1, ,.., N1) and by virtue of 

the last two equations of (1.2) the inequalities un_ f unf, w,_ f wW 

(n = 1, .,., N1) may obtain as before for the N, components under con- 

sideration, i.e. we have a tangential discontinuity. However, in so far 

as there is a flow of the remaining components across the given surface 

of discontinuity, then this surface constitutes a shock wave and, in 

particular, we may show that p_ f p+, D&continuities of this type are 

called complex discontinuities. 

let us consider, for example, the case of the motion of a two-component 

medium, in which there is a flow of the first component, but not of the 

second, across the surface of discontinuity. Then from the system (l.l), 

(1.21, (1.31, (1.4), written out for this case, the following relations 

can be obtained: 

b+ - u1+)2 = 
P--P+ 

pl+ (1 - pl+ / p,_) 

p1- = (1 -x) pl-J1 p+ = xp*-” 

(1.7) 

c p+pf+ ic _ 

P- Pz+O 1 (1.8) 
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Vl- - VI+ = (vi?+ - VI+) 
1 -x-- P,, I PI_” 

I-K 
(1.10) 

It is obvious from (1.9) that to any value of p_ > p+ there corres- 
ponds a positive value of (v2+ - vl+)* and consequently for any pressure 

p_ > p+ we can find a value for the difference of the velocities of the 
components in front of the surface of discontinuity 1 v2+ - vi+\, for 
which complex discontinuities can propagate. For increasing p_ the 
quantity (v2+ - vI+)’ increases, moreover there exists a certain minimal 
value for the modulus of the difference in velocities of the components 

I”2+ - ‘I+1 min for which the existence of a complex discontinuity is 
possrble. ‘Ibis value is obtained from (1.9) by letting p_ -, p+ and eluci- 
dating the indeterminacy of the type O/O; then we have 

(1.11) 

Where al+’ = 61’(~1+o, pal p. ‘1 is a known function since the equation 

of state p = 55,fp,O, pot polo f is given. 

In the case when 1 v2+ - ul+;tl < 1 v2+ - vl+( mi the existence of a 
complex discontinuity becomes impossible. From ‘71.10) it is evident that 
in the case v2+ > v1+(v2+ < vls) we shall have 

Vl- > Vlr bl- <: VI+.) 
In so far = P-/P+ > ~~_~/p~+~, then it follows from the second ex- 

pression of (1.8) that 

Pz- < P2+ 

From (1.7) it is obvious that p,, > pi+, since otherwise the quantity 

“2+ - vl+ would be imaginary. 

Yet another peculiarity of the mixture in comparison with the single- 
component medium is the possibility’ in principle of the existence in it 
of discontinuities, on both sides of which the pressure and true densities 
of all the components are the same, and yet there exists a flow of the 
components across the surface of discontinuity. In this case the peculiar 
densities and the velocities of motion will have discontinuities. 

‘The real possibility of the existence of this discontinuity in a 

stream for any appreciable interval of time is bound up with the 

difficulties of practical achievement of all the boundary conditions 
which are necessary (see below) for its existence, 
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Let us restrict ourselves for the sake of simplicity to the case of 

equality of the velocities of all the components in front of the surface 

of discontinuity (u 

tions of system (1.3 

= u+, n = 1, , . . , IV). Then, adding the first equa- 

f or all N components and using (1.11, (1.4) and the 

first equation (l.S), we obtain with p_ = p+ the relation 

N 

2 Pn4 (%- - 3,) = 0 

We see that for some of the components there is an increase of velo- 

city at the discontinuity surface, and for other components a decrease. 

For a two-component medium it is easy to obtain from (1.11, (1.21, 

f1.41 the following relations: 

Z’,- - l’+ - + ---y -4:: (‘-~)lv~p,+~p2~ 
1’.& - 1:+ zz f “i(1--yj/1 PlP;-p2, Pl+O 

u--u+=~ v’ p+ 
PI++ Pee 

PI- - 
b+Pl+ - 

p’+ = - P2+ + PI+ t 

-- 

1 

ps- - Pa+ = 
PI+“(P~+S.Fl+f I:-:) 

p2+p1+p2c3 

(1.12) 

For the sake of definiteness suppose that p*+‘> pl+O. Then pi_ - pl, 

< @, Pz_ - P2+ > 0. Accordingly, at a discontinuity surface of equal 

pressure, the peculiar density of the denser component will increase, 

whilst that of the less dense component will decrease. An increase in 

velocity of the first component corresponds to a decrease in velocity of 

the second component and vice versa. 

From the examples considered it can be observed that the velocities 

and peculiar densities of the components in the case p_ > p+, p,,’ > 

pn+ Ohi = 1, , . . , N) can either increase or decrease at a surface of dis- 

continuity in a multi-component medium, although the true densities of 

both components either increase or remain unaltered. 

From what follows it is clear that this is true, not merely for the 

particular cases of discontinuities studied above. 

Let us pass on now to consideration of shock waves in a multi-compon~t 

medium, i.e. those discontinuities for which there is a flow of all the 

components across the surface of discontinuity, and moreover p_ > p+. 

Then it follows from the last two equations of (1.2) that 
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u,- = iz,+, w+.. = w,+ @=I,...,N) 
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From the system of the remaining 3 N + 1 equations (1. l), (1.21, (1.3), 
(1.4) 

(D- vn+) Pn-l- = (0 - G.--) pn- 

Pn+ (D - u,+)~ + p+ pn+ / Pn+” = pn- (D - h-1 $_ P-Pn- / Pn-" 

p- = pn(pn-", PO, Pm*) (n = %-..,A? (1.13) 

N Pn- 
x----=1 
* r Pn--O 

we can determine the remainder of the 3 N + 1 parameters of the mixture 
behind the surface of discontinuity (p_, pn_, p,_‘, ~a_; n = 1, . . . , N) 
and the velocity of translation of the discontinuity, if we are given a 
boundary condition which is equivalent to stipulating any one of the 
parameters behind the surface of discontinuity. 

JJowever, in the calculation of the motion of a multi-component medium 
problem often arise in which the boundary condition is equivalent to 
stipulating several of the parameters (the piston problem, the problem 
of the penetration of bodies into a multi-component medium, etc. >. In 
this case one has to expect the appearance of a system of several waves. 

Jet us consider in more detail the case of weak shock waves; in this 
case the shock wave relations can be linearised. 

2. Weak shock waves. Let us write the parameters of the medium behind 
the surface of the shock wave in the form 

(fi=i,...,N) 

PC -p+ + pt, pn- =pn+-t Pn'r pn-" = Pn_LO + PnO', %-= vn++vfl) 

where p’, ,on’, pno’, un’ are assumed to be so small that their products 
can be neglected. Substituting these expressions in (1.13), let us 
neglect the products and squares of small quantities. Then, bearing in 
mind the relation (l.S), we obtain the following system of 3 N + 1 equa- 
tions, which are homogeneous with respect to the 3 N + 1 unknowns 
p’, ~a’, pno’, u,‘(n = 1, . . . . N): 

Pn’ (D - rn +) = vn’pn+ (n=l,...,N) (2.4) 

pn'I(f) - o,+12 + P+ ,’ ~n+*l - 2vnt~nc t-Q - ~a+) + P’P~+ /pm+” - 

- pn”‘p+pni. f p*+OZ = 0 (2.2) 
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P 
I 

= GITpPn"' (a n+ 2 = %'(bl+", PO, pan")) (2.3) 

(2.4) 

The condition for the existence of non-zero solutions of this system 

is that its determinant should vanish. ‘lhis condition determines the 

values of D corresponding to non-zero solutions. Let us obtain this con- 

dition more simply. Let us substitute the value p.‘, obtained from (2.3), 

in the equations (2.4) and (2.2). 

Then we have 

i j$- (Pd -p* P’) =O 
n-1 

pn' [(D -. u,+)2 + i.,‘q - 2z:n'Pn+(D - %I+) + p'vnpn+/ Pn+” =o 

where 

A,2 = + , p+ v,=l- 0 
*+ Pn+%+2 

From the last equation, using (2.1), we have 

Pn_tVn 
pn’ = p’ pn+o [(,!I - Un+)4 - A,*] (n=l,....N) 

(2.5) 

(2.6) 

Substituting this expression in (2.5), we obtain an equation which is 

the condition for the existence of non-zero solutions of the system under 

consideration: 

f;- Pn+ “7x 1 
CJ P,+02 

,,=I I (Jj_._ “n+)2_ln2 - 2 I = 0 
an+ (2.7) 

Ihis equation gives, generally speaking, 2N values of D, whilst the 

number of real solutions depends upon the parameters of the medium in 

front of the surface of discontinuity. 

From (2.1) and (2.6) we obtain a relation connecting the pressure and 

velocity of the n’th component behind the surface of discontinuity: 

p’ = v,’ 
P,,+O [CD - Z’n+)2 - An21 

v, CD - un+) 
(II = 1, . . ) N) (2.8) 
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From the relation (2.1) we see that if the condition D = ua+ is 
the foregoing section it satisfied for the n’th component v,’ = 0. From 

is obvious that in this case the discontinuity 

From the relation (2.8) it follows that, if 

D - en+ = ~fr A, 

is fulfilled for the n’th component, then p’ = 

is one with equal pressure. But then by virtue 

(2.9) holds for all the components. 

can be complex. 

the relation 

(2.9) 

0, i.e. the discontinuity 

of (2.8) the expression 

I.& us consider in more detail the case of a medium consisting of two 

components. lhen, introducing the notation D - v2+ = y, u2+ - vl+ = dv, 

we obtain from (2.7): 

AU = -Yst: J 
AyZ- E 

Cy2--B 

where 

LI = p2+ 

pzc 02a 2 

+ Ql, 

2+ Qr, I+ 
a2a 2 

(2.10) 

(2.11) 

Let us study the function (2.10). Its asymptotes are 

The graph shown in the figure portrays the function (2.10) in the case 

when the following inequality is satisfied: 

BIC>ElA (2.12) 

It is easy to show that this inequality is satisfied in all cases of 

practical interest. 

Fig. 1. 

Xn order to determine the values of y corresponding to the case 

‘4 v = 0, let us equate y* to the expression under the square root sign in 
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formula (2.10). Then we obtain 

y2 = 
A+B-&V(A+B)2-4Ec 

2c 
(2.1S) 

From (2.12) it follows that (A + B)* > 4EC and therefore formula 

(2.13) gives four real values for the velocity of translation of the weak 

shock wave (points Ml, M,‘, P,, P,’ in the figure). 

We see from the figure that for values of Av which satisfy the in- 

equalities 

/A~l>lAr I>% IArl>lA~sk\ 

there are four possible velocities of translation of weak shock waves, 

whilst in the range 

I ‘bk / > i Av I > I &,+I 

there exist only two real values of this velocity. To the values lhv\ = 

Iizvlk) and (Avl = [Avzk ( there correspond three different values for y. 

These critical values for the velocity difference t &4vIR and + AvZk 

(the points P 
function (2.lbi. 

P , M2, M3 in the figure) are extremal values of the 

Z n order to determine them let us equate to zero the 

derivative of the function (2.10), thus obtaining 

It is easy to see that there exist only two real values of y* satisfy- 

ing this equation. Of these, yIk2 < E/A and yzk > B/C, as shown in the 

figure. 

The points R,, 

y=+JmJ 
R,(Av= Lm, y = 0) and R?, R,bv= em, 

correspond to complex weak discontmuities. 

Let us investigate how the velocities of translation of weak shock 

waves change as a function of the quantitative proportions of the com- 

ponents in the mixture. Let us consider the case of equal velocities of 

the components in front of the surface of the wave (in particular, the 

case of propagation of a wave into a stationary mixture). Then from the 

relation (2.8) for the first and second component we have 

(2.14) 

It is not difficult to verify that as the quantity m = pl+/pl+O varies 

in the range 

Q<m<l (2.15) 

the function (2.13) .h g c an es monotonically. The limiting values of the 

function (2.13) corresponding to the transition to a single-component 



Propagation of diseontinuities in (I rulti-eoaponent rcditrr 

medium are as follows: Yi2 = a*+’ 

Yz2 = $2 for m = 1. 
’ y2 * = A,* for s = 0, and Y1* 

217 

= a i+2* 

Accordingly, with the growth of the-fraction of the first component in 
the mixture the value yl= D, - u+ of the greater velocity of propagation 
of the wave varies monotonically, from a value equal to the sound velo- 
city in a medium composed entirely of the second component, to the value 
of the sound velocity in a medium composed entirely of the first component. 

“Ihe existence of limiting values (when m + 0, m + 1) for the smaller 
velocity of propagation of the wave y2 = D2 - v+ does not indicate, of 
course, the possibility of existence in a single-co~onent rn~i~ of a 
second velocity of propagation of a disturbance, since the intensity of 
the wave moving with the velocity I), tends to zero with transition to the 
limiting cases. 

In fact, for example, in the case m + 0, i.e. (D 

shall have p’ + 0, which follows from equation (2.8 3 
- v+)' -+ hi2, we 

for the first 
component, and then from equation (2.8) for the second component it 
follows that u,’ + 0. Equations (2.1) and (2.3) in this case give P2’.-) 0, 

O’ + 0 
L 

p2 l 

(I)* - v+>z Since for values of m lying in the range (2.15) the quantity 
satisfies the inequality 

&2 > (f), - v+)* > hs2 ( or i,r2 < (& - 0,)” < kz2) 

(in view of its monotonic variation in the range considered), from the 
relation (2.141 we find that v2’/vI’ < 0. Consequently, if the velocity 
of one of the components increases as a wave moving with the velocity 

D, - v+, then the velocity of the other component decreases. But then it 
follows from the relation (2.1) that an increase of the peculiar density 
of one of the components results in a decrease of the peculiar density 
of the other component. We notice that a decrease in the peculiar density 
of a component does not imply a decrease in its true density: when p’ > 0 
we always have pa” > 0. 

we 
It is obvious that, for a wave propagated with the velocity I), - u+, 
have v2’/u1’ > 0 (since (D1 - V+)2 > $2, fn, - zJ+F > h,% 

Using (2.131, let us find the limiting values of the derivative for 
the case of the upper sign (corresponding to the velocity D,: 

for R= 0 

dense, almost incompressible, medium (water, sand etc. 1. lhen a*+ >> al+, 

P2+O ” Pr+O and consequently the value of ~~(y’)/~~ o is very large in 
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absolute value, and moreover [d(y2)/&l, >> Id(y2)/'c&tll. This means that, 

with the occurrence in the dense medium of even an insignificant quantity 

of gas (air), the value D1 - v+ of the velocity of propagation of waves 

very quickly drops by comparison with the velocity of sound in the dense 

medium when free from contamination by the gas; for a comparatively small 

volume of entrained gas in the dense medium the value of the velocity of 

propagation of the wave in the given two-co~onent medium approaches the 

value of the velocity of sound in the gas. If the medium is a mixture of 

two dense components, then the change in the quantity D, - V+ from the 

value a*+ to the value al+ takes place more uniformly. 

For studying the dependence of the quantity y2 = (D- v*+)~ on the 

quantitative composition of a two-component mixture with arbitrary values 

of AV it is sufficient to consider the deformation of the graph in the 

figure, as the quantity m varies in the range (2.15). 

It is not difficult to show that the characteristic points indicated 

in the figure move monotonically, and that in the limiting cases the 

graph degenerates into straight lines, corresponding to the limiting 

positions of the asymptotes. 

let us consider now the case of an N-component medium. From equation 

(2.7), introducing the notation 

%=y+~N+-CL’,+ (Y =D--UN+) (n=l,...,N) (2.16) 

we obtain 

(2.17) 

where 

1, = x VW 
Pn+ 

(n = 1,. . . , N) 

Equations (2.16) and (2.17) describe a straight line and a surface 

respectively in N-dimensional space, defined by the system of coordinates 

(2 1' *+*, z~_~, y). Their point of intersection gives the values of 

zl' . . . . z~_~, y, for which the velocity D of translation of the wave is 
determined. 

It is easy to study the surface (2.17) by dissecting it with planes 

passing through the y-axis. In particular, it is not difficult to show 

that the existence of the maximum number of waves (2N) is possible for 

sufficiently small and for sufficiently large values of the differences 

of the velocities of the components. 
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